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To obtain a thres-dimensionat reconstruction of the hip-
pocampus from a volumetric MRI head study, it is necessary
to separate that structure not only from the surrounding white
matter, but also from contiguous areas of gray matter—the
amygdala and cerebral cortex. At present it is necessary for a
physician to manually segment the hippocampus on each
slice of the volume to obtain such a reconstruction. This
process is time consuming, and is subject to inter- and intra-
operator variation as well as large discontinuities between
slices. We propose a novel technique, making use of a com-
bination of gray scale and edge-detection algorithms and
some a priori knowledge, by which a computer may make an
unsupervised identification of a given structure through a
series of conliguous images. This technique is applicable
even if the structure includes so-called false contours or
missing contours. Applications include three-dimensional re-
construction of difficult-to-segment regions of the brain, and
volumetric measurements of structures from series of two-
dimensional images.

Key words: magnetic resonance imaging; three-dimensional;
features extraction.

INTRODUCTION

Magnetic resonance imaging is able to produce high-
resolution two dimensional images of the human brain.
A series of such images may be used o reconstruct a
three dimensional volume of the brain or one of its in-
ternal structures. A necessary first step to such a recon-
struction, however, is a successful segmentation of the
desired structure from the surrounding tissue. Several
studies (1-3) have shown that it is possible to separate
the various major classes of brain tissue—white matter,
gray matter, and cerebrospinal fluid (CSF). However,
many of the brain's structures are contipuous to other
structuraes of the same tissue type. The hippocampus, for
example, is composed of gray matter. It is partially sur-
rounded by white matter, but is contiguous over much of
its area to other gray maller structures, '

When a physician makes an identification of the hip-
pocampus on an MRI scan, two types of knowledge are
used. The differentiation between white and gray matter
provides some percenlage of the boundary. General
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knowledge of the size, location, and shape of the struc-
ture then enables the formation of a boundary across
regions where no clear distinction of tissue lypes may be
made. It is the goal of our algorithm to allow a computer
access lo these same two types of information. The first
type, differentiation of tissue types, is a well-explored
topic. Our algorithm makes use of a modification of the
adaptive clustering algorithm of Pappas (4), for which we
have derived an improved image model, to provide a
smooth, connected tissue segmentation. Il then makes
use of the active contour model of Kass et al. {snakes) {5)
to provide the second type of information—size, loca-
tion, and shape of the desired feature. The combination
of these two techniques is important, because in the past
the Kass algorithm has generally been limited to a semi-
automated technique, requiring manual manipulation on
each segmented image, as in (6} Prior gray scale segmen-
tation eliminates irrelevant image features, allowing the
snake algarithm to operate efficiently without supervi-
sion.

The primary application of this algorithm is in the
quick and accurate in vive volume measurement of the
hippocampus and amygdala. Jack et al. and others (7, 8)
have shown that such a measurement may be an impor-
tant aid in the diagnosis of intractable temporal lobe
epilepsy. Jack et al. (9) and Kesslak et of. (10) have also
shown that this data may predict dementia of the Alzhei-
mer type. Current techniques for obtaining these volumes
include manua! tracing, thresholding, and random mark-
ing. These processes require extensive human interac-
tion, and are time-consuming and subject to variation.

In this paper, our algorithm is tested for inter- and
intra-operator variability. The resulis of our algorithm’s
identification of a phantom structure from a series of
simulated MRI scans are then tested against known cor-
ract results. We also compare our algorithm's perfor-
mance in identifying the hippocampus on an actual se-
ries of MR] brain scans against a physician’s manual
identification.

In the following sections we will address the problems
of grayscale and contour segmentation. We will then
present our experimental procedure and results,

GRAY SCALE SEGMENTATION
Bayesian Formulation

Gray scale segmentation is the process of separating a
given image into regions of similar statistical behavior.
Among the simplest and most obvious ways of accom-
plishing this is the well-known k-means algorithm,
which is an optimal (in terms of minimum mean squared
error) pixel-by-pixel scalar quantization of the image into
k levels. However, k-means lype algorithms impose no
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spatial constraints, and therefore are easily fooled by
additive noise. In other words, these algorithms fail to
take into account any a priori knowledge of the con-
nected nature of the segmenled image.

The most common solution to this problem is to incor-
porate spatial information by modelling the image as a
Markov random field (MRF) or Gibbs random field (GRF).
The GRF is used more frequently, primarily because the
MRF is defined in terms of local properties, making the
derivation of a global joint distribution difficult {11).
Such a derivation is critical for our application because,
given a segmentation x and a data set y, we wish to
maximize the a posteriori conditional probability P(x! y).
This is given by Bayes’ theorem as

P(xly)eP(yix}P(x) (1]

In this equation, P(x)is the a priori probability of the
segmentation, which is derived entirely from the random
field model. P(y|x) is a measure of how well the data
matches the current segmentation. These two terms,
then, provide conflicting constraints on the segmenta-
tion. P(y!x) seeks the most probable solution based on
conformity to Gaussian statistics, while P(x} seeks 1o
conform the global distribution to the prediction of the
random field. The relative weighting of these terms will
determine the characteristics of the final segmentation.

The Random Field Model

Assume that a random field x is defined over an N x N
lattice (square array) of sites denoted by S, with the
individual sites (pixels) denoted by s, ,, 5, ., Spas - Spne
For segmentation purposes, each site on x may take on
any integer value from 1 to k, where & is the number of
classes (tissue types) into which the image is being sep-
mented. Let w be a realization of x. In order to define the
random field, it is necessary first to define a neighbor-
hood system Gs on the lattice S. The neighborhood sys-
tem determines which pixels on the lattice will directly
affect the classification of site s. In this work, a first order,
or four-point, neighborhood system is used, so that only
pixels which share a side with site s will be considered
its neighbors.

A clique is defined as a set of sites on S such that all
points are mutual neighbors. In a four-point neighbor-
hood system, there are four two-point cliques, given
by [sn.ml sn - I.m)r (sn.mr Sn 4 l..m)' [Sn,m' sn.m 1] ﬂ.l'ld
(Sn.m» Spm+1) There is also a single one-point clique,
(). Howaever, as this adds no information, it is disre-
garded.

The random field x is an MRF with respect to G if

P(x=w)=0forall w [2]
and
PX,=x|X,=x,r#s)
=PX,=x)X,=x,r€ G, [3]

i.e., all configurations must have a non-zero probability,
and the conditional probability of a particular site must
depend only on its immediate neighbors as defined by G.
This model has been used in a number of applications,
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including (12, 13). However, it has associated with it
certain difficulties which make the Gibbs distribution
mare attractive. Primary amonyg these is that the MRF is
defined only in terms of local characteristics, making the
calculation of a global joint distribution very difficult.
In contrast, the GRF provides a global model for an
image, specifying a probability mass function of the form:

P(X=x)=e Wiz f4]

where Ulx) is the Gibbs potential, or Gibbs energy, de-
fined by

Ulx) = D, V() (5]
C

Vi{x) is the clique potential, given by

+ B otherwise

Vel %) = | ()
and Z is a normalizing constant, called the partition
Function, given by

Z= 3o, 171

il

Since Z is the sum of the numerator exponents over all
possible vectors x, it is extremely difficult to compute.
This intractability prevents realization of a GRF using
direct calculation, thus requiring the use of stochastic
relaxation methods.

Using the Gibbs formulation, it is possible to calculate
the global probability of a given image configuration
based on the clique potentials, which depend solely on
the local properties of the pixels.

Finally, it should be noted that a unique GRF exists for
every MRF as long as tha Gibbs field is defined in terms
of cliques on a neighborhood system (14). In other words,
it is possible to uniquely specify an MRF by specifying
Gibbs potentials. This means that nothing is lost through
making use of the more mathematically tractable Gibbs
model.

Dubes and Jain have shown that it is possible to
achieve dramatic image reconstruction results using
multi-parameter GRF modeling and algorithms such as
the Gibbs sampler (11) if all parameters of the Gibbs
distribution and degrading noise are known. However,
there is currently no algerithmic method for deriving
these parameters from an arbitrary data set. We therefore
assume a simple pairwise interaction model. This model
stipulates only that there should be a dependence in
classification between neighboring pixels, and requires
only a weighting constant, 8, which determines the rel-
ative importance of two terms in the Bayesian formula-
tion. Unfortunately, 8 must be optimized experimentally
for a class of images. In this work, 8 = 1.0 was used for all
segmentations.

The Image Model

Returning to Eq. [1], we now need a functional form for
P(yix). This will be dependent upon our model for the
image data. Chang et al. (15} have shown that a satisfac-
tory segmentation of a volumetric MRI head study may
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be achieved by modeling each tissue type in the volume
as a slowly varying intensity p,. The ohserved data in a
given region is then given by the original intensity cor-
rupted by spatially invariant white Gaussian noise. Our
experiments indicate, however, that the assumption of
spatially invariant noise is not accurate. It is true that the
data acquisition system (imaging and postprocessing)
will degrade the image in a way that may be accurately
modeled by additive Gaussian noise with a given stan-
dard deviation, o, which will be particular to that imag-
ing system. Allowing this to be the sole model for image
noise, however, ignores the fact that the tissue we wish to
have classified as white matter, for instance, is not per-
fectly uniform with regard to proton density and mag-
netic susceptibility. Small local inhomogeneities will
produce irregularity in the image, which will be tissue
dependent. Additionally, nonuniformity of coil sensitiv-
ity will add a spatially dependent signal variation. We
model this degradation as additive Gaussian noise with
local standard deviation a;, where i is the tissue class
and s is the lattice site. The overall naise in the system,
therefore, is Gaussian, with variance given by

oy =05+ a’. (8]

Under this assumption, the conditional probability may
be written as

P(yix) = H(:’h) exp ~ 2[2;? - #x.)z] (9}

5

where o, is the overall noise variance for class x,.
Substituting into Lq. [1], and summing the exponen-
tials, we obtain

P(xly) = l_[ ((_:I) oxXp — [2[%0’: = f-‘-x.)l] T EVC(X}]

[10]

We wish to maximize this function, or, equivalently, to
maximize its natural logarithm, given by

1
IH(P(XIY)) ® - _‘ZE_IH(O.‘J + 20‘_-;0’- = P'X,)z] = EVE(X)
(11]

This is achieved in an iterative fashion, using Besag's
iterated conditional modes {ICM) (16). We coasider the
entire volume to be a single three-dimensional GRF with
a lower sampling frequency in the z-direction (between
frames) than in the x and y directions {within a single
frame), and employ a shrinking parameter estimation
window, as outlined in (4, 15).

The application of this improved image model pro-
vides significantly superior results in two areas. First, in
prior formulations, o was an operator-determined param-
eter. Because it is difficult to know the noise statistics of
an image a priori, this parameter needed to be experi-
mentally determined for each image in order to ensure
optimality. Second, and more importantly, allowing o to
vary with tissue type and region produces significantly
mare accurate segmentation, particularly in the case of
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images which have been degraded by field inhomogene-
ities. This point is demonsirated in Fig. 1 and 2,

CONTOQUR SEGMENTATION
Snakes

Once tissue segmentation has been accomplished, our
algorithm makes use of the active contour model of Kass
et al. (snakes) (5) to provide the second required type of
information: the general size, shape and location of the
desired structure. The snake algorithm models the seg-
mentation problem as a physical system. Our implemen-
tation begins with an operator-provided initial rough es-
timate of the location and shape of the hippocampus, i.e.,
a rough outline of the target on a single slice of the
volume. This closed loop of pixels may be thought of as
a string of ball bearings, each of which is connected to its
nearssl neighbors by a spring with spring constant c,.
The image may then be thought of as an inverted surface,
with areas of high intensity corresponding to valleys, and
areas of low intensity corresponding to peaks. If we then
edge-map the image using a Marr-Hildreth operator, the
result will be a largely flat surface, with deep valleys
corresponding to edges. The string of ball bearings is then
laid down on the surface, and the bearings “roll” into
nearby valleys (edges), while stretching smoothly across
the boundary points where edges are not available. When
the contour reaches a stable point of minimum energy,
the target should be outlined by a smooth, closed con-
lour.

Once the target has been posilively identified in a
single slice, that information may be passed to the adja-
cent slices, where it serves as the initialization for the
new snake. For this particular application of this process
there are significant difficulties in the passing of con-
tours from slice lo slice, owing largely to the complex
shape of the hippocampus. Further discussion of these
difficulties and their solution is given below.

This intuitive explanation is, of course, somewhat
oversimplified. More rigorously, the overall energy at

each pixel in the snake contour is given by
Em= e+ e + [3Y 2] [12]

In this equation, e, is the value of site s on the edge map.
The internal spline energy, e, is 8 measure of first and

Fig. 1. Fixed o adaptive clustering applied to a degraded MRI brain
scan. Nole overdevelopment of gray matter on the right and
underdevelopment on the left, causing partial loss of both hip-
pocampi.

- ST )
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Fig. 2. Modified adaptive clustering applied to a degraded MRI
brain scan. Note symmetrical development of the cortex and of
both hippocampl.

second order discontinuities in the contour at a given
point, given by

2= (Clv(s)® + glv, (s)IN)2 [13]

Here the first term, v,(s} limits first order discontinuity
(point separation), i.e., the distance from the point under
examination te its next nearest neighbors. The second
term, v,,(s} limits second order discontinuity (bending).
This term is more difficult to measure. In this work it is
approximated by 1/p, where p is the local {(over 5 points)
radius of curvature.

The final term in Eq. [12] e,,, is a measure of how far
a pixel has moved from its position in the previous
frame. This term is not included in the original snake
formulation, and is intended to provide continuity and
smoothness between frames. This is most impartant for
accurate 3-d reconstruction, as will be shown in our
experimental results.

Like the gray scale segmentation algorithm, the snake
algorithm requires parameters which cannot be deter-
mined theoratically. In this case these paramelers are the
weighting constants ¢, ¢,, and ¢,. While this might ap-
pear to be a serious drawback, our experiments (as well
as the many applications of snakes found in the segmen-
tation literature) indicate that these parameters can be
optimized a single lime for application to a broad class of
images. In this work, valuesof ¢; = 0.1,c, = 1.0,and ¢, =
0.05 were used.

The Kass algorithm has been used previously in three-
dimensional segmentation problems (6, 17, 18). It has
not, however, been used in conjunction with gray scale
segmentation. The specifics of this problem make this a
significant innovation, because the low contrast between
white and gray matter and relatively high levels of noise
found in MRI images, particularly those with a small
slice thickness, make the number of local minima in the
original images so great that the snake algorithm becomes
virtually useless with gradient-ascent type energy mini-
mization. The problem is compounded by partial volume
effects, which frequently cause tissues to appear to fade
into one another with no discernible boundary and ren-
der standard noise reduction techiniques ineffective. This
situation is illustrated in Fig. 3.

One possible limitation of this two step approach is
that errors in the initial tissue segmentation could pro-
duce errors in the resultant contours. These errors might

Fig. 3. (a) Physician’s manual hippocampal identification. (b) Iden-
tification by snake algorithm on unsegemented MRI data (initial
contour in white, final contour in black.) (c) Identification by snake
algorithm on segmentated MRI data (initial contour in white, final
contour in black.) Note that the contour in (b) has moved very little,
due to a lack of discernible edges.

then propagate through the volume. However, this will
only occur under two conditions—first, if a small error is
present in the same position on several successive slices,
or second, if a very large error pulls the snake far from its
correct position. The first case is the more likely of the
two. Fortunately, small displacements are unlikely to
affect the positioning of the snake on successive correctly
segmented frames. The second case could be more dam-
aging, in that a very large placement error could propa-
gate throughout the volume. However, such a large seg-
mentation error is extremely unlikely, and has not been
observed in any of our experiments on either simulated
or real data.

It is possible that under certain circumstances this
algorithm could be effactive on unsegmented images in
conjunction with a broad feature-space search algorithm
such as simulated annealing (19). However, the huge
computational requirements of such algorithms far out-
weigh the benefits of avoiding the segmentation step.

The snake algorithm has also generally been used ei-
ther for applications where the desired feature changes
little between slices, as in (17), or in conjunction with
interactive registration, as in (6). Extraction of the hip-
pocampus require displacement compensation. We have
derived a simple and efficient system for accomplishing
this without human interaction.

Motion Estimation

The thickness of an MRI slice (3 mm in the series we
examined) in comparison to the pixel size (0.7 mm) and
the complex shape of the hippocampus make simple
passing of contours from one slice to the next, as in (17),
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problematic. In order to abtain maximum structural in-
formation we use coronal sections, with the result that
the major axis of the hippocampus is not perpendicular
1o the image planes. Because of this, in some cases the
location of the hippocampus changes by as much as half
the object size from one slice to the next. The large errors
associated with misaligned initial contours are illus-
trated in Fig. 4e and 4f. We therefore rely on a block
motion estimator to obtain a motion vector between
slices, under the assumption of global motion of a 64 X
64 pixel block around the hippocampus (20).

The motion vector is obtained by first finding the max-
imum point on a cross-correlation of this block from slice
n with the corresponding block fram slice n — 1. Under
the assumplion of glabal motion, the motion is then
given by the vector from the origin of the correlation
space to the location of its maximum.

Once the motion vector has been obtained, the location
of each pixel of the previous contour is adjusted accord-
ingly. This adjustment provides dramatically more accu-
rate results, as illustrated in Fig. 5.

RESULTS AND DISCUSSION

In the first set of experiments, the sensilivity of the snake
algorithm to the initial contour was studied. There are
two cases for which the initial contour sensitivity is
relevant, The first is the response to the operalor-entered
contour, which will determine the inter- and intra-oper-
ator variability. Because one of our prime motivations is
to limit such variability, we expect this sensitivity to be

Fig. 4. Results of contour segmentation on a single slice of seg-
mented MRI data with various initial contours. Initial contours are
shown in white, Final contours are shown in black.
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Fig. 5. {a) Segmented hippocampal region of slice 7 of 13 from MRI
series, with final contour shown in black. (b) Hippocampal region
of slice 8. Initial contour, passed without motion estimation from
slice 7, shown in white. Final contour shown in black. (c) Hip-
pocampal region of slice 8. Initial contour, passed with motion
estimation from slice 7, shown in white. Final contour shown in
black.

very small. The second case involves the response to
contours passed from a previous slice to the current one.
This will not affect variability. It will, however, have an
impact on the overall accuracy of the system.

In order to investigate the first case, we provided the
snake algorithm with muliiple initial contours for the
segmentation of a single slice. The first contour provided
a reasonably accurate estimate of object size and shape.
Successive initial contours degenerated to a level of ac-
curacy well below that which a reasonable operator
could be expected to provide. A sampling of the results,
with initial contours shown in white and final results in
black, is given in Fig. 4. Note that available edges are
successfully located in the resulting segmentation until
Fig. 4e, where the initial contour clearly excludes a sig-
nificant portion of the hippocampus, and Fig. 4f, where
the initial contour clearly includes the amygdala. Dis-
counting such gross operator errors, this experiment in-
dicates considerable robustness in the algorithm. Insen-
sitivity to inilial input is one of the primary advantages of
this technique, and is a result of the prior segmentation
which eliminates spurious edges which might draw the
snake away from the correct result, thus making manual
manipulation of the contours, as in (§), unnecessary.

Case two was investigated, and a statistical measure of
operator sensitivity was obtained, by providing our algo-
rithm with multiple input contours for the segmentation
of an MRI brain sequence which will be described in
more detail below. This resulled in a coefficient of vari-
ance of 3.38% in the calculation of the area of the initial
slice. This declined to 2.85% on the succeeding slice,

R e e
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and the coefficient of variance for the overall calculation
of the hippocampal volume was 2.70%.

Our secend set of experiments involved a 28-slice sim-
ulated MRI phantom. This phantom mimics the statistics
of the hippocampal region, with a background of gray
level 190, an object of gray level 155, and a statistically
identical region which must be bridged by the active
contour algorithm. As in the actual hippocampus, the
major axis of the phantom is skew to the image planes.
The center slice of this phantom is given in Fig, 6. In-
creasing levels of noise were added to the images in the
phantom, and our algorithm’s calculation of the volume
of the selected structure &t each noise level was com-
pared to the known correct results. An identical initial
contour was used to begin processing at the center slice
for each noise level. As an additional lest of robustness,
the series with o = 12.0 was re-run with an initial con-
tour at the first slice. Results were identical to the series
begun at the center slice. Results for a sample slice, with
the initial contour shown, are given in Fig. 7. Nole that
although the shown image is not grayscale segmented, all
calculations were performed on segmented images, for
reasons cited above. A plot of calculated object area
versus true area at each slice and for each noise level is
given in Fig. 8. Percentage errors on the simulations,
where the correct results were precisely known, were
0.5% for ¢ = 5.0, and 2.7% for the series which most
closely matched the actual statistics of the MRI scans
used in later experiments (o = 12.0). Note that there is no
significant error until ¢ = 17.5, which is beyond the
upper range of the noise found in our real MRI data.
Object area was used as a comparison metric because a
primary application of this algorithm is the accurate cal-
culation of hippocampal velumes. Additionally, varia-
tion in volume calculation is the primary metric of accu-
racy cited in the literature in the evaluation of manual
techniques which this algorithm is intended to replace.
This evaluation technique is clearly limited, in that a

Fig. 6. One frame of our MRI phantom.
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Fig. 7. Our contour segmentation routine applied to one slice of
our MR phantom. Initial contour is shown in white.
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Fig. &. True versus calculated areas for noise standard deviation
ranging from 5.0 to 20.0. Noise standard deviations in actual MRI
data ranged from 6.0 to 15.0.

completely erroneous segmentation could, through
chance, result in an accurate volume calculation. How-
ever, visual inspection of the segmentations in our ex-
periments confirms the apparent accuracy of the algo-
rithm,

Our next experiment was conducted on a 13-slice sec-
tion of a 60-slice coronal SPGR (spoiled grass) MRI head
sequence with 35/5/30/2 (repetition time/echo time/flip
angle/excitations). Slice thickness was 3.0 mm. Imaging
was perfarmed using a General Electric Signa 1.5 Tesla
superconducting system. Note that, with regards to mo-
tion estimation and contour segmentation, this is a
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“worse case,” in that studies intended for hippocampal
avaluation are frequently performed with a slice thick-
ness of 1.5 mm, Clearly this would limit changes in
hippocampal shape and displacement between slices.
Manual identifications of the hippocampus were made
on each of the slices by a physician. As a comparison,
one manually idenlified cross-section was then pre-
sented as an initial contour to our algorithm, which cal-
culated a three-dimensional reconstruction of the hip-
pocampus. A plot of manually versus automatically
calculated areas is given in Fig. 9. Calculation time for
this series, running on a Sun SPARC 10 workstation, was
approximately 45 min. Three representative slices taken
from the series, inciuding original images with manual
identifications and segmentations with automatic identi-
fications, are given in Fig. 10. This figure shows the close
correlation bstween the manual identifications and the
automatic identifications. It should be noted that some
variation is accounted for by the manual oversimplifica-
tion of the shape of the hippocampus.

Finally, three-dimensional reconstructions of the left
and right hippocampus as identified by our algorithm,
and of the left hippocampus as identified manually, were
produced using the Advanced Visual Systems (AVS) vol-
ume rendering system. These reconstructions are given
in Figs. 11 and 12.

Jack et al. (21) have reported a coefficient of variance
between operators of 1.9% for a combined thresholding/
tracing technique. While this is somewhat smaller than
our results given above, it should be noted that we de-
liberately provided our algorithm with what we consid-
ered 1o be the most widely variant initial contours which

B —
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Fig. 9. Manual versus automatic calculated hippocampal areas.
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Fig. 10. (a) Slice 2 of 13 from MRI series, with manual hippocampal
identification. (b) Segmentation of (a), with automatic hippocampa!
identification. (c) and (d); slice 6 of 13. (e) and (f); Slice 10 of 13.

Fig. 11. Reconstruction of automatically extracted left and right
hippocampi.

could reasonably be expected. Because our algorithm is
deterministic given an initial contour, and because dif-
ferent initial contours tend to converge as they proceed
through the volume {as demonstrated by the decline in
variance from the first slice to the final result) a reason-
ably well trained and consistent operator should be able
to achieve very consistent results.

CONCLUSIONS

In trials on both simulations and actual data, our algo-
rithm appears to provide accurate and reproducible re-
sults, with reasonable compultational complexity. Repro-
ducibility in this context indicates that the algorithm is
insensitive 1o the precise shape and placement of the
initial contour, as demonstrated in the previous section,
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Fig. 12. Reconstruction of manually extracted left hippocampus.

The primary weakness of our algorithm is demonstrated
in Fig. 10f. It is clear in this figuro that the segmentation
algorithm has grouped a portion of the amygdala with the
hippocampus. This is a result of the series beginning
with an initial contour at slice 6, which does not contain
any portion of the amygdala. The algorithm, therefore, is
unaware that a boundary between the two structures at
that point should exist. Despite this problem, however,
the reconstructions given in Figs. 11 and 12 would tend
to suggest that, in some instances, the automatic identi-
fication may be more accurate. In particular, the sharp
discontinuities in the reconstruction of the manual iden-
tifications given in Fig. 12 should be noted. These are the
result of the physician working with two-dimensional
data only, whereas our aigorithm is able to consider the
three-dimensional volume as a whole.

Future work in this area will include experimentation
with larger scanned-phantom data sets and more exten-
sive human studies, as well as extending this technique
to other imaging modalities, including CT and ultra-
sound.
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